Superconducting Cavities for High Power Accelerators

Tsuyoshi Tajima Los Alamos National Laboratory

Thanks for information and pictures for this talk!!

- CERN: E. Chiaveri
- Cornell: H. Padamsee
- KEK: T. Furuya and S. Mitsunobu
- LANL: My coworkers
- TJNAF: P. Kneisel

Outline

- Review of the superconducting cavities used for:
 - High luminosity colliders (beam current ³
 500 mA) CESR, KEKB, LHC
 - High power proton linacs (Power ³ 1 MW)
 APT, SNS
- Some R&D issues in using superconducting cavities for high power accelerators in the future

High Power Accelerators

- For elementary
 particle physics using
 high luminosity
 machines (factories)
 - B factory
 - Phi factory
 - Tau-charm factory

- To produce spallation neutrons using high energy protons
 - Spallation Neutron Sources (SNS)
 - Accelerator production of Tritium (APT)
 - AcceleratorTransmutation ofWaste (ATW)

Features of High Luminosity Accelerators

- High current (I > ~ 0.5 A) with many bunches
- Short bunch length ($< \sim 1$ cm) and small β function at the interaction point
- Double-ring collider in most cases

Challenges for Accelerators

- High current (short bunch interval) can cause strong coupled-bunch instabilities
- Growth rate of any instability must be lower than radiation damping rate or the value achieved with bunch-by-bunch feedback
- \Rightarrow Must lower (damp) higher-order mode (HOM) impedance, typically < 1 k Ω (mono-pole mode) and < several k Ω /m (dipole mode) per cavity
- Beam blow up with electron clouds

HOM Damped Cavities

- There have been three types of cavities
 - 1. Use widely opened beam pipes, the cut-off frequency is higher than accelerating mode but lower than most HOMs (KEKB-SC, CESR cavities)
 - 2. Use wave guides, the cut-off frequency of which is higher than accelerating mode but lower than the HOMs (PEP II, DAF NE cavities)
 - 3. All the modes leak out BUT accelerating mode is reflected back by a choke structure (Choke-mode cavity)

Single-Cell Superconducting Cavity is Suited for the 1st Type

- High accelerating voltage can be kept with widely opened beam pipes
- It is possible to make all the HOMs travel out of the cavity through the beam pipes and be absorbed with absorbing materials (dampers) ⇒ CESR, KEKB cavities

Concept of Single-Mode Cavity

- Ideally, make all the HOMs leak out of the cell through beam pipes
- In reality, some dipole modes cannot leak out
- **▶** Fluted beam pipe (CESR)
- **▶** Partially enlarged pipe (KEKB)

An example calculated with CLANS

CESR Superconducting Cavity Module

500 MHz

CESR Cavity

KEKB Superconducting Cavity Module

KEKB Cavity

CESR HOM Absorber

CESR HOM Absorber one assembled piece

- 3.2 mm-thick ferrite tile
- Soldered onto Elkonite (58 % W and 42 % Cu), which has similar expansion coefficient with ferrite

KEKB HOM Absorber

- 4-mm thick ferrite
- Two ferrite sizes
 - 220 mm OD (120 mm long)
 - 300 mm OD (150 mm long)
- Sinter bonding of pre-sintered ferrite powder, a method developed at KEK

Mode Damping with Absorbers

Top: Without absorbers

Bottom: With absorbers

Performance of KEKB Cavities

Present Status of CESR and KEKB Cavities (as of July 5, 2001)

• CESR

 Four cavities have been installed and a maximum current of 0.78 A with two beams has been achieved (design 1.0 A)

KEKB

- Eight cavities have been installed and a maximum current of 0.78 A has been achieved (design 1.1 A)
- Both cavities have been very reliable (average RF trip rate is ~ once/2 weeks/cavity at KEKB)

CESR Beam Power History

7/16/01 Snowmass2001 20

CESR Peak Current History

Superconducting Cavity for LHC

- Eight 400 MHz, single-cell cavities for acceleration of each 0.56 A proton beams
- Sputter Coating of Nb on copper technology used for LEP cavities is applied
- Design values
 - $E_{acc} = 5 \text{ MV/m at } 4.5 \text{ K}$
 - $Q_0 = 2 \times 10^9 \text{ at 5 MV/m}$
- 300 kW/cavity will be delivered to beam
- Variable coupler based on LEP2 design will be used

LHC Superconducting Cavity before Niobium Coating

Beam pipe diameter: 300 mm

Equator diameter: 689 mm

Performance of LHC Cavity

(S. Bauer et al., SRF99)

High Power Proton Linacs

- Applications to use neutrons produced by spallation effect
 - Accelerator Production of Tritium (APT)
 - \Rightarrow 1 GeV, 100 mA CW Linac \Rightarrow 100 MW
 - Spallation Neutron Sources (SNS)
 - \Rightarrow 1 GeV, 26 mA (av. macropulse), 1.56 mA (average), pulse (60 Hz, duty 6 %) \Rightarrow 1.56 MW (average)

Superconducting Cavities for Proton Linacs

- Since beam current is relatively low, damped cavities are not necessary
- Multi-cell cavities, e.g., 5- to 6- cell cavities, have been designed/fabricated
- Because the particle speed is lower than light velocity, the cavity cell shape is changed accordingly

Superconducting Cavities for Proton Linacs (β =v/c > 0.45)

• Foreshortened elliptical cavities for lower velocities (difference of shape > an example below)

$$\beta = 0.49$$

$$\beta = 0.64$$

SNS Cavities (805 MHz)

(P. Kneisel et al., PAC2001)

$$\beta = 0.61$$

$$\beta = 0.81$$

Performance of SNS Cavity

Superconducting Cavities for Proton Linacs (β < 0.45)

• Spoke resonator is a good candidate for this due to mechanical stability and small size compared to elliptical cavities

Performance of Spoke Cavity made by ANL and Tested at LANL

ANL b=0.29 spoke cavity Q vs. Eacc

■ 4K Aft. Helium Process ▲ 2K Aft. Helium Process • ADTF Spec.

High Power Input Couplers

- Coaxial-type couplers are the main stream (APT, KEKB, LEP, SNS, TESLA)
- CESR (Cornell) uses waveguide-type coupler
- Present maximum power delivered to beam is ~ 380 kW (KEKB, design 240 kW)
- At the test bench, APT coupler has been tested > 1 MW TW. (design 420 kW)

SNS Coupler based on KEKB Coupler (Campisi et al., PAC2001)

- 1 Outer Conductor
- 3 Window Assembly

9 - Ceramic Window

- 5 Inner Extension
- 7 Doorkoob
- 6 Waveguide
- 8 Waveguide Cover

4 - Outer Extension

Figure 1: Fundamental Power Coupler.

APT Coupler

Issues on Power Couplers

- Multipacting ⇒ Coaxial lines are well understood and DC biasing can avoid this
- Gas condensation on a cooled surface and related enhancement of electron emission coefficient ⇒
 Can lower the effect with additional pumping and by reducing outgassing rate from window
- Discharge/arc from ceramic window ⇒ Eliminate cold window, thin TiN coating of the surface and degassing with baking can reduce this problem

Issues on Superconducting Cavities for Higher Power Accelerators

- For higher current applications (a few amperes)
 - The single-mode cavity seems to work well
 - ED&D of absorbers that can handle higher power will be necessary (shape, higher thermal conductivity material, etc.)
 - Power coupler may still work well at higher power with better thermal management